Skip Navigation: Avoid going through Home page links and jump straight to content
spacer spacer spacer
spacer spacer spacer
spacer
NASA Logo    + View the NASA Portal  
Near Earth Object Program
spacer
spacer spacer spacer
spacer
NEO Basics Search Programs Discovery Statistics Accessible NEAs News Frequently Asked Questions
spacer
spacer spacer spacer
spacer
Orbit Diagrams Orbit Elements Close Approaches Impact Risk Images Related LInks
spacer
spacer spacer spacer
spacer

IMAGE OF ROTER KAMM CRATER

This space radar image shows the Roter Kamm impact crater in southwest Namibia. The crater rim is seen in the lower center of the image as a radar-bright, circular feature. Geologists believe the crater was formed by a meteorite that collided with Earth approximately 5 million years ago. The data were acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) instrument onboard space shuttle Endeavour on April 14, 1994.
roter_s.jpg

Roter Kamm Crater
Namibia
SIR-C Radar Image
April 14, 1994

The area is located at 27.8 degrees south latitude and 16.2 degrees east longitude in southern Africa. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); and blue represents the C-band (horizontally transmitted and vertically received). The area shown is approximately 25.5 kilometers (15.8 miles) by 36.4 kilometers (22.5 miles), with north toward the lower right. The bright white irregular feature in the lower left corner is a small hill of exposed rock outcrop. Roter Kamm is a moderate sized impact crater, 2.5 kilometers (1.5 miles) in diameter rim to rim, and is 130 meters (400 feet) deep. However, its original floor is covered by sand deposits at least 100 meters (300 feet) thick. In a conventional aerial photograph, the brightly colored surfaces immediately surrounding the crater cannot be seen because they are covered by sand. The faint blue surfaces adjacent to the rim may indicate the presence of a layer of rocks ejected from the crater during the impact. The darkest areas are thick windblown sand deposits which form dunes and sand sheets. The sand surface is smooth relative to the surrounding granite and limestone rock outcrops and appears dark in radar image. The green tones are related primarily to larger vegetation growing on sand soil, and the reddish tones are associated with thinly mantled limestone outcrops. Studies of impact craters on the surface of the Earth help geologists understand the role of the impact process in the Earth's evolution, including effects on the atmosphere and on biological evolution.

Menu
FIRST GOV   NASA Home Page Site Manager: Don Yeomans
Webmaster: Ron Baalke
Last Updated:
Feedback Credits Privacy Mailing List NASA